Daniel Parks ¢ daniel@demonhorse.com ¢ 503-913-9333

My calling is building tools for humans and I've spent the last two decades doing exactly that.

I have extensive experience taking projects from conception to production. I spent years helping
small businesses define and build web applications and tools. I've both built applications from the
ground up and added features to old, hairy codebases. I know when to go fast and dirty, and
when to go slow and clean.

I'm looking for a non-management technical leadership position. I'm flexible about what
languages are involved, but I’'m particularly interested in writing Rust, Python, Go, or JavaScript.
I hope to work closely with other engineers — I believe that teams succeed when members
support each other and grow together.

Work experience

2015 to 2019 — Puppet — Senior Software Engineer, Manager of Engineering

I'joined the Puppet SRE team to build tools for the team and their clients. Notable projects
included an automatic GitHub mirror in Python, tools to manage OpenStack, and an automatic
server inventory system in Ruby.

As a manager, I helped my team grow from a group of individuals working on their own projects
into a focussed team. In addition, I managed vendors, improved our agile process, and
significantly reduced our on call burden.

2007 to 2014 — Contractor

I worked with clients to define the 7ght requirements and make the 7ght trade-offs. Often clients
needed an outside perspective to see what was and wasn’t necessary.

For example, I worked with an e-commerce client to evaluate applications for on-site product
review. We chose to build a tightly scoped, custom review system which saved them more than
$10,000 a year compared to a SaaS solution.

A typical project involved a PHP or Ruby backend on top of a MySQL or PostgreSQL database.
Frontends were primarily rendered server-side, but generally had interactive functionality
implemented in Javascript and CSS. I worked extensively on all parts of the stack, from writing
CSS and slicing images to designing database schemas and configuring servers.

I also built related tools, such as an importer for a single massive XML file containing 20,000
products, and a web crawler that scraped car ads from dealer web sites.

mailto:daniel-aaaabOIegd@demonhorse.com

Open source projects
htmlize — github.com/danielparks/htmlize
Htmlize 1s a Rust crate that correctly encodes and decodes HT'ML text.

Encoding entities 1s easy and fast, but decoding entities correctly has two major edge cases: not all
entities have to end with a semicolon, e.g. © (©), and some entities contain other entities as

a prefix, e.g. ℗ (®).

After significant experimentation, I chose two fast decode algorithms. They produce identical
results, but switching between them trades faster compile times (with a perfect hash) for faster run
times (with a massive match tree generated by my crate matchgen).

yanki — github.com/danielparks/yanki

Yanki is a Python command line tool made to simplify creating thousands of video flashcards
from YouTube videos.

I designed Yanki to be an authoring tool. It can produce flashcards in the popular Anki format,
or it can produce static HI'ML that can be hosted on any web server. Most people will find the
HTML app much easier to use.

Internally, Yanki includes a simple parser for deck definition files, and uses ffimpeg to trim, crop,
and/or slow video. Since ffmpeg is primarily single threaded when encoding media, Yanki uses
Python’s asyncio to run multiple instance in parallel and significantly cut down the time

needed to process thousands of flashcards.

git-status-vars — github.com/danielparks/ git-status-vars

I configure my shell prompt to display information about the current git repository, e.g. the name
of the curent branch, whether or not there are uncommitted changes, etc. Loading that
information required multiple calls to git which added a noticeable delay after every command,
including trivial ones like cd. Git-status-vars uses 11bgit2 to quickly read common repo
information, then prints the information in shell variable form. The output can be evaled and

the variables can be used in a prompt.

Last updated July 28, 2025

https://github.com/danielparks/htmlize
https://docs.rs/htmlize/latest/htmlize/static.ENTITIES.html
https://github.com/danielparks/matchgen
https://github.com/danielparks/yanki
https://apps.ankiweb.net/
https://ffmpeg.org/
https://github.com/danielparks/git-status-vars

